
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETINGFORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7906 |

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

An interim report on a
FILE PARTITIONING AND RECORD PLACEMENT IN continuing NRL problem.
ATTRIBUTE-BASED FILE ORGANIZATIONS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Edwin J. McCauley
Frank A. Manola

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem B02-24
Washington, D.C. 20375

Washington, D.C. 20375 Project RF-21-222-401-4361
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy July 10,1975
Office of Naval Research 13. NUMBER OF PAGES

Arlington, Virginia 22217 13
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20, if different from Report)

la. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Attributes Data Base Task Group File structures Physical structure
Clusters Data structures Keywords Record access
CODASYL DBMS Logical structure Record placement
Data bases File partitioning Modeling Storage cells

20. ABSTRACT (Continue on reverse side if neceaaary end Identify by block number)

The position occupied by a record of the data base on secondary storage can affect perfor-
mance in a variety of ways. Record placement and file organization interact with one another.
A model was developed for certain techniques that utilize the physical device characteristics and
the logical file content to optimize retrieval efficiency and precision. Methods were reviewed for
partitioning the file into disjoint groups of records (called clusters) such that in most cases an
access to the file will involve a small number of clusters. A record placement technique that
preserves these clusters was developed, followed by a search algorithm which, when this record

(Continued)

DDI JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014- 6601
1 SECURITY CLASSIFICAI ORN Or IS nIs J- nen I- r- B .-I_

I ,

.LuIJ'RITY CLASSIFICATION OF THIS PAGE(When Data Entered)

placement policy is followed, gives improved performance in the areas of precision and effi-
ciency. Finally, application of the techniques to existing systems was considered.

11SECURITY CLASSIFICATION OF THIS PAGE(Whren Data Entered)

CONTENTS

INTRODUCTION... 1

DATA BASE MODEL 1

Relations on Records 2
Cell Equivalence 2
Logical Equivalence 3
Structural Equivalence 3
Cluster Equivalence 3
File Structure and Algorithms 4
Record Insertion 5
Record Retrieval 6

CONCLUSIONS.. 7

OTHER APPLICATIONS 7

SUMMARY.. 9

ACKNOWLEDGMENTS...................................... 9

REFERENCES... 10

iii

FILE PARTITIONING AND RECORD PLACEMENT IN
ATTRIBUTE-BASED FILE ORGANIZATIONS

INTRODUCTION

The design of file structure for a data base management system (DBMS) requires that
many different features be taken into account. 'The designer must be simultaneously cog-
nizant of the physical characteristics of the devices on which the file is to be located, of
the logical content of the data base, and of anticipated uses of the system. File designers
have always been concerned about record placement and file organization. Where a record
of the data base is placed on secondary storage can affect performance in a variety of ways.
For example, the first access to certain contiguous units of secondary storage "cells" (e.g.,
a cylinder on a moving-arm disk or a page in a virtual memory system) "costs" more
than immediately subsequent accesses to the same cell, since a price is paid for the first
access (arm movement for the cylinder, a transfer to main memory for the page) which is
not paid for the subsequent accesses. At the same time, when the DBMS is given a query
requesting some set of records from the data base, some file organizations will allow that
set of records to be precisely identified in the logical file structure without accessing nu-
merous records unrelated to the query, while other file organizations will not. Moreover,
record placement and file organization interact with one another. For example, in the
case described above, optimum performance would be provided if the set of records could
be precisely located in the logical file structure, and if the set had been placed in the few-
est possible storage cells. In this way the fewest possible "first access costs" would be
paid. Of course, it may not be possible to provide such optimal placement for every an-
ticipated query unless many duplicate records are allowed.

A model has been developed for certain techniques which utilize the physical device
characteristics and the logical file content to optimize retrieval efficiency and precision.
Methods are suggested for partitioning the file into disjoint groups of records (called
clusters) such that in most cases an access to the file will involve a small number of
clusters. A record placement technique which preserves these clusters is developed. Then
a search algorithm is developed which, when this record placement policy is followed, gives
improved performance in the areas of precision and efficiency. Finally, application of the
techniques to existing systems is considered. This work is in many respects an extension
of work reported in Refs. 1-6.

DATA BASE MODEL

We start with two undefined terms: a set A of attributes and a set V of values. These
are left undefined to allow the broadest possible interpretation.

Note: Manuscript submitted May 1, 1975.

1

McCAULEY AND MANOLA

A record r is a subset of the Cartesian product A X V in which each attribute has
one and only one value. We can consider r to be a collection of ordered pairs: (an attri-
bute, its value). Every record is assigned a unique address.

For practical reasons we shall limit our consideration to (attribute, value) pairs which
are succinct. Such pairs will be called keywords, and will be denoted by K or Ki. Al-
though larger pairs will still be allowed to occur in records and will be returned when the
record is retrieved, only keywords may be used in queries.

Relations on Records

A relation on the records of a data base is a set of ordered pairs of records (r, r').
If two records are related by a relation REL, we denote this by r REL r'. REL is an
equivalence relation if it has the following properties:

* Reflexive: for any record r, r REL r

* Symmetric: if r REL r', then r' REL r

* Transitive: if r REL r' and r' REL r", then r REL r".

An equivalence relation partitions the records of the data base into disjoint groups called
equivalence classes. For a given equivalence relation REL, only records within a single
equivalence class are related to one another by REL. Two records in different equivalence
classes of REL are not related by REL. (They may be related in some other way, how-
ever.)

We shall now identify a number of useful equivalence relations on the records of a
data base. The first relation is derived from physical considerations.

Cell Equivalence

Two addresses a and a' are related by CEA, cell equivalence, if

a=e *s+d

and

a' = e * s + d'

where 0 < d < s and 0 < d' < s. The partitions introduced by CEA will be called secon-
dary storage cells, or simply cells. The number of cells is one greater than the maximum
value of e. The integer s is called the cell size. Since this relation is defined for every
address, an address a can be associated with a cell as follows:

c:=ENTIER (a/s), ENTIER is the ALGOL "floor function."

2

NRL REPORT 7906

The cell equivalence relation on addresses, CEA, determines an equivalence relation on rec-
ords, CER, based on the physical placement of the records. Two records are related by
CER if their addresses are related by CEA, i.e., if the two addresses are in the same cell.

Logical Equivalence

Another category of equivalence relations is based on the logical content of the record
as revealed by its keywords. In earlier work, both Wong and Chiang [6] and Rothnie and
Lozano [51 have discussed such logical equivalence relations.

A keyword K is true for a record r if K is in r; otherwise, it is false. A query is a
proposition given by a Boolean expression of keywords. A query is true for a record r if
this proposition holds for the keywords of r. In this case, r is said to satisfy the query.
Thus, every Boolean expression f(K1, ..., Km) is either true or false for each record.

Consider a set of keywords X = IK1, ..., Kn]. We shall base our logical equivalence
relation upon expressions of the following form;

K1*A K2*A ...A Kn*

where Ki* is either Ki or Ki. There are 2**n such expressions. A given record will satisfy
one and only one of these expressions. Therefore, it should be clear that these expressions
each determine an equivalence class in the logical equivalence relation LOG. In practice,
it is likely that many of these equivalence classes are empty because no records satisfy
that expression of the keywords in X.

Structural Equivalence

A third type of equivalence relation is structural. The structural equivalence relation
STR models those partitioning decisions which are based on factors other than the record's
address or its keywords. The most important of these other types of partitioning result
from design decisions about the file structure. For example, in an inverted file the designer,
in effect, specifies that no record is related to any other record by the file structure, i.e.,
that the equivalence classes of STR have exactly one member each. It is also desirable to
limit the size for the STR equivalence classes for reasons other than to produce an inverted
file, such as to limit the propagation of damage. If, for example, all the records of the
file were on a single chain, i.e., there is one STR equivalence class with all the records in
it, then damage to any record might render unreachable all those records further down the
chain. We emphasize the separation between STR and CER because STR models the
results of design decisions and CER models the result of physical device characteristics.

Cluster Equivalence

The three equivalence relations already discussed, CER, LOG, and STR, may be inter-
sected to form a new equivalence relation. This equivalence relation, which we shall call
cluster equivalence, (CLS), has the property that two records r and r' are related by CLS,

3

McCAULEY AND MANOLA

i.e., r CLS r', if and only if r CER r', r LOG r', and r STR r'. We shall call the equivalence
classes of CLS clusters.

The use of the concept of cluster equivalence allows us to simultaneously reflect
desirable logical, physical, and structural properties. We will see that an insertion algorithm
which preserves these logical, physical, and structural properties allows us to base an access
algorithm on the cluster equivalence relation with assurance that efficient access will be
performed.

When a system user presents a record to be inserted in the data base, the keywords
of the record determine the logical equivalence class to which the record belongs by deter-
mining which of the expressions of the keywords from X the record satisfies. The system
decides where the record is to be placed, which determines to which cell equivalence class
the record will belong. The record's membership in a structural equivalence class is deter-
mined by how the system links the record into the data base structure.

File Structure and Algorithms

To discuss this, we must add to our basic model the data base siructures and algorithms
needed for record insertion and retrieval.

Associated with each keyword K in record r is the address of another record with the
same keyword. We shall call this the pointer of r with respect to K or briefly the K-pointer.
To retain the uniformity of definitions, we allow the existence of null pointers.

A list L of records with respect to keyword K (or, briefly, a K-list) is a set of records
each containing K such that

1. The K-pointers are all distinct,

2. Each non-null K-pointer gives the address of a record within L and L only,

3. There is a unique record in L not pointed to by any other record containing
K, called the beginning of the list,

4. There is a unique record in L with a null K-pointer, the end of the list,

5. No two Ki lists have a record in common for the same i.

We let p[ij] be the number of records in the jth Ki list, which has beginning address a[ij].

A set F of records is called a file if every K-list containing one or more of these records
is contained in F. Every file is assigned a unique file name.

A directory of F is a set of sequences, one for each keyword Ki, called directory entries
for Ki and denoted D(Ki), each of which is of the form

4

NRL REPORT 7906

D(Ki) = [Ki, h[i]; (c[i,l], a[i,l], p[i,11,

(c[i,h[i]], a[i,h[i]], p[i,h[i~ll)],

where

h[i] is the number of clusters which include records containing Ki

c[ij] is the cluster in which the jth Ki list is contained

a[ij] and p[ij] are as defined above.

We shall require that every K-list have all its member records in the same cluster. We
shall call this the disjoint list property. This property, together with the fact that there is
an entry in the directory for each distinct K-list which identifies the cluster in which that
list is contained, allows clusters to be excluded from possible search through examination
of only the directory if the cluster cannot contain records which satisfy a query.

Record Insertion

Algorithm 1 - Record Insertion:

Input: A record to be inserted.

Step 1: Determine which of the keywords of the record are in the set X. These key-
words will determine the logical equivalence class to which the record belongs.

Step 2: Determine candidate clusters for insertion by intersecting the sets of cluster
identifiers associated with each of the keywords found in Step 1. Call the re-
sulting set of cluster identifiers THETA.

Step 3: Delete from THETA those clusters into which the record cannot be inserted
either because the cell in which the cluster is located is full or because inser-
tion in the cluster is not allowed by the structural relation.

Step 4: Examine the remaining clusters represented in THETA against the added record,
deleting any cluster which represents a different logical equivalence class.

Step 5: If THETA is null, add to THETA the address of the location where a new
cluster may be started. This new cluster location should be selected so that
all the members of the logical equivalence class are in as few cells as possible.

Step 6: Arbitrarily select any remaining member of THETA, insert the record in that
cluster, link it onto all the appropriate Ki-lists, and update the directory.

Notice that this algorithm does not make use of any secondary data structures other than
the directory and the temporary structure THETA. The algorithm preserves the logical

5

McCAULEY AND MANOLA

relation (step 4) and the structural relation (step 3). Steps 2 and 3 eliminate from consid-
eration at an early stage those clusters into which the record could not be inserted.

Record Retrieval

Algorithm 2 - Parallel Search:

Input: A query as an expression of keywords in disjunctive normal form.

Step 1: Determine candidate clusters by intersecting the set of cluster identifiers
associated with the keywords in the ith conjunct, placing the results in
THETA[i]. Repeat for each of the conjuncts in the query.

Step 2: Find the prime keywords. Find the keyword KPRIME in the ith conjunct
that has the shortest KPRIME-list in each cluster in THETA[i]. Merge a pair
(KPRIME, c) onto a list GAMMA where c is the cluster in which KPRIME is a
prime keyword. Repeat for each of the conjuncts in the query.

Step 3: Decode the directory and initialize the search list. For each (KPRIME, c) pair
on GAMMA, find the beginning address of the KPRIME-list in cluster c and
merge this address onto an ascending sorted list, SIGMA.

Step 4: Search the file.

a. Find the smallest unused address on SIGMA and retrieve that record. Mark
that address as used. If all addresses have been used, exit.

b. For each of the keywords K that are prime for this cluster and that are pres-
ent in the retrieved record, merge their K-pointers into SIGMA.

c. Process the retrieved record against the user's query. If the record satisfies
the query, give the record to the user.

d. Continue with step 4a.

This retrieval algorithm has several desirable characteristics. First, some clusters will
be immediately excluded from consideration in step 1 because they cannot contain records
which satisfy the query. If the structural equivalence classes are defined so as to give an
inverted file, this same step gives the 100% precision characteristic of inverted file process-
ing. By selecting prime keywords we examine the minimum number of records. This is
because in searching down a prime keyword list the algorithm will encounter all the records
in the cluster which could possibly satisfy the query. Notice that a different keyword from
a conjunct may be prime for different clusters. The algorithm retrieves a given record
once, even if that record is on the lists of many keywords that are prime for this cluster.
The literature [3,4,7] has examples of how keyword lists are searched in parallel by a
similar algorithm. Because of the disjoint list property discussed above, the processing of
records in one cluster can be made independent of that in any other cluster. Thus it may

6

NRL REPORT 7906

be possible to process different clusters in parallel if the physical input-output (I/0) system
allows for such operations.

CONCLUSIONS

This approach partitions the set of records in a file into clusters, such that all the
records of a given cluster have certain logical characteristics in common. Given our assump-
tions concerning the costs of accessing cells, a reasonable objective of a search algorithm
is to minimize the number of cells accessed in retrieving records satisfying some Boolean
expression of keywords. To attain this objective, two conditions must be satisfied:

* Records must be assigned to cells in such a way that a small number of cells will
contain records satisfying the Boolean expression.

* Some mechanism must exist for determining which cells contain these records
without accessing other cells.

Since all the members of a cluster are stored in a minimum number of cells, and informa-
tion about this mapping is maintained in the directory, both these conditions are fulfilled.
Because a cluster is a logical, rather than a physical, partition, the number of records in a
cluster will vary depending on the distribution of values in the file. Hence, the cluster
may contain more records than will fit on a single cell. Nevertheless, as long as care is
taken to minimize the number of cells containing records of a given cluster, the conditions
are still satisfied.

Let us reflect briefly on the implications of these results. First, note that a query
made up only of keywords from X results in the retrieval of only records satisfying the
query, i.e., 100% retrieval precision. Thus, if X is chosen to include the most frequently
used keywords, we will have a high probability that an arbitrary query will be answered
with 100% retrieval precision. Such a situation can be, of course, achieved by using an
inverted file, but this model allows for a substantially smaller directory while achieving
nearly the same retrieval precision as an inverted file. The update algorithm places all the
records from a logical equivalence class in as few cells as possible. The search algorithm
examines only those clusters which could contain records which satisfy the query. So, for
each conjunct, we will access a minimum number of cells and return all the records which
satisfy the conjunct and only those records.

OTHER APPLICATIONS

The preceding results can also be applied to other situations. Consider the problem
of partitioning the data base into security classes as discussed in Ref. 8. We would like to
avoid the necessity of reorganizing the data base every time the access rules are changed.
At the same time we must have no more than one security class in a cell, so that physical
compartmentalization may be used to reinforce the logical access controls. This model
provides a solution to both of these problems. If X includes all keywords which may be
used in formulating an access rule, every record in a cluster will have the same set of

7

McCAULEY AND MANOLA

accesses permitted and denied regardless of what access rules are actually in force. This
is because within a cluster all the records satisfy the same Boolean expression of the key-
words in X. Since X contains all the keywords from which access rules may be formulated,
any access rule simply permits or denies access to an entire cluster.

The use of these concepts is not merely confined to theory. The motivations for the
model and the approach described in this paper closely parallel certain aspects of the work
of the CODASYL Data Base Task Group [9] and those of its successor, the Data Descrip-
tion Language Committee [10]. In the following discussion, some acquaintance is presumed
with these specifications.

We will consider the relationship of our model to the DBTG specifications by consid-
ering a particular mapping of language constructs from Refs. 1 and 2 to the concepts of
our model. Simplifying considerably, the DBTG "set" construct, which links related rec-
ords logically, becomes a list (or lists) in our model. The DBTG area, which partitions
the records of the data base, becomes a cluster. An area is defined in Ref. 10 as:

An AREA is a named collection of records which need not preserve
[set] relationships. An area may contain occurrences of one or more
record types, and a record type may have occurrences in more than
one area. A particular record is assigned to a single area and may not
migrate between areas.

The following discussion from Ref. 10 of some of the uses of sets and areas clarifies the
relationship between the DBTG concepts and those of our model:

The concept of area allows the Data Administrator to subdivide a data
base rather than considering the data base as a single unit. The use of
areas allows the Data Administrator or the DBMS to control placement
of an entire area to provide efficient storage and retrieval The ob-
jective of providing for control of relative placement of records is to
increase efficiency by advising the DBMS of anticipated usage patterns
of records. Thus, the schema DDL permits specification of the area or
areas to which occurrences of a particular record type are to be assigned
by the DBMS. The schema DDL also includes a clause which causes
records being added to the data base to be stored near some other record
in the data base. Conceptually, the effect of such clauses is to request
the clustering of records which are required as a group to perform some
procedure, thereby improving performance.

Those familiar with the DBTG specifications will note immediately that DBTG sets
do not necessarily satisfy the same disjoint list property with respect to areas as lists do
with respect to clusters in our model, since, in general, a set may contain records residing
in several areas. If a set contains records in different areas, and if we assume a simple
mapping from different areas to different physical files (as is often the case in DBTG im-
plementations), access via the logical structure (sets) of the data base may be nonlocal in
its access to physical storage cells which have been associated with the files, thus creating
inefficient physical access characteristics. For this reason, the DBTG specifications

8

NRL REPORT 7906

include the capability of making sets satisfy a disjointness property with respect to areas
similar to our disjoint list property, if retrieval via these sets is to be optimized. This is
done through a combination of record-to-set and record-to-area assignment policy, which
ensures that records in a given set are confined to the same area (and under our assumed
physical storage mapping, to a small set of physical storage cells).

Of course, one must not attempt to carry too far this analogy between the specific
details of our model and those of the DBTG specifications. For example, the area is not
precisely a cluster because the physical units of storage to which the area is mapped do
not partition the sets of an area, and thus the sets would not satisfy the disjoint list
property with respect to cells, as they must in our model. Further, the area construct can
be used for purposes other than logical clustering, such as the grouping of records for re-
covery purposes.

What we are trying to do in discussing these DBTG concepts is to show that the
concepts discussed in our model have been taken into account in some modern data base
systems. We are not necessarily claiming that the DBTG systems will exhibit all the prop-
erties of this model, since some properties in particular depend upon the specific DBTG
implementation. Furthermore, it is by no means true that only DBTG implementations
can use the principles presented here. The model is not concerned with the user view of
the data base, but rather with internal techniques. Thus, the principles described here can
also be applied to systems based on the relational model of data introduced by Codd [11].
For example, Whitney [12] describes several systems based on the relational model which
either could use, or presently do use, techniques similar to those described here. Also,
Rothnie has built a relational-model-based DBMS described in Refs. 13 and 14 that uses
the model he describes in Ref. 5, which we have indicated is closely related to the model
described here.

SUMMARY

We have presented a formal model for file structures and algorithms for the use of
these structures. Systems which are constructed to use the ideas discussed above will
likely have a high retrieval precision and a minimum number of cell accesses for a larger
number of queries.

A system based directly on this model is currently in the design stage at Ohio State
University. We hope to report on concrete results in the near future.

ACKNOWLEDGMENTS

We would like to thank our good friend and mentor, Dr. David Hsiao of Ohio State
University for providing the stimulus for this report. Without the efforts of our reviewers,
Dr. Harvey Koch of Ohio State University and A. Metaxides of Bell Laboratories, this re-
port would have been far less complete.

9

McCAULEY AND MANOLA

REFERENCES

1. D. Hsiao and F. Harary, "A Formal System for Information Retrieval from Files,"
Comm. ACM 13, No. 2, 67-73 (Feb. 1970).

2. D. Hsiao and F. Manola, "Data Management with Variable Structure and Rapid
Access," Proceedings of the First USA-JAPAN Computer Conference, Tokyo, Japan,
1972.

3. D. Hsiao and F. Manola, "A Unified Approach to Structure, Access and Update in
Data Base Systems," Proceedings of EUROCOMP 1974, May 1974.

4. F. Manola and D. Hsiao, "A Model for Keyword Based File Structure and Access,"
NRL Memorandum Report 2544, Naval Research Laboratory, Washington, D.C.,
Jan. 1973.

5. J.B. Rothnie, Jr., and T. Lozano, "Attribute Based File Organization in a Paged
Memory Environment," Comm. ACM 17, No. 2, 63-69 (Feb. 1974).

6. E. Wong and T.C. Chiang, "Canonical Structure in Attribute Based File Organization,"
Comm. ACM 14, No. 9, 593-597 (Sept. 1971).

7. D. Hsiao, System Programming - Concepts of Operating and Data Base Systems,
Addison-Wesley, to be published 1975.

8. E. McCauley, "A Model for Data Secure Systems," Ph.D. Dissertation, Ohio State
University, 1975.

9. CODASYL Data Base Task Group, April 1971 Report, Association for Computing
Machinery, 1971.

10. CODASYL Data Description Language Journal of Development, NBS Handbook 113,
U. S. Government Printing Office, Washington, D.C., June 1973.

11. E.F. Codd, "A Relational Model of Data for Large Shared Data Banks," Comm. ACM
13, No. 6, 377-387 (June 1970).

12. V.K.M. Whitney, "Relational Data Management Implementation Techniques,"
Proceedings of the 1974 ACM SIGFIDET Workshop, ACM, New York.

13. J.B. Rothnie, "The Design of Generalized Data Management Systems," Ph.D. Disser-
tation, Dept. of Civil Engineering, MIT, 1972.

14. J.B. Rothnie, "An Approach to Implementing a Relational Data Management System,"
Proceedings of the 1974 ACM SIGFIDET Workshop, ACM, New YORK.

10

